CSC 2224: Parallel Computer
Architecture and Programming
Parallel Processing, Multicores

Prof. Gennady Pekhimenko
University of Toronto
Fall 2022

The content of this lecture is adapted from the lectures of
Onur Mutlu @ CMU

Summary

* Parallelism
* Multiprocessing fundamentals
* Amdahl’s Law

* Why Multicores?

— Alternatives
— Examples

Flynn’s Taxonomy of Computers

* Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE,
1966
* SISD: Single instruction operates on single data element
* SIMD: Single instruction operates on multiple data elements
— Array processor
— Vector processor
* MISD: Multiple instructions operate on single data element
— Closest form: systolic array processor, streaming processor

* MIMD: Multiple instructions operate on multiple data elements
(multiple instruction streams)

— Multiprocessor
— Multithreaded processor

Why Parallel Computers?

Parallelism: Doing multiple things at a time
Things: instructions, operations, tasks

Main Goal: Improve performance (Execution time or task
throughput)

* Execution time of a program governed by Amdahl’s Law
Other Goals
— Reduce power consumption
* (4N units at freq F/4) consume less power than (N units at
freq F)
* Why?
— Improve cost efficiency and scalability, reduce complexity

* Harder to design a single unit that performs as well as N
simpler units

Types of Parallelism & How to Exploit Them

* |nstruction Level Parallelism

— Different instructions within a stream can be executed in parallel
— Pipelining, out-of-order execution, speculative execution, VLIW
— Dataflow

 Data Parallelism

— Different pieces of data can be operated on in parallel
— SIMD: Vector processing, array processing
— Systolic arrays, streaming processors

* Task Level Parallelism

— Different “tasks/threads” can be executed in parallel
— Multithreading
— Multiprocessing (multi-core)

Task-Level Parallelism

* Partition a single problem into multiple related tasks
(threads)
— Explicitly: Parallel programming
* Easy when tasks are natural in the problem
* Difficult when natural task boundaries are unclear

— Transparently/implicitly: Thread level speculation
* Partition a single thread speculatively

* Run many independent tasks (processes) together

— Easy when there are many processes
* Batch simulations, different users, cloud computing

— Does not improve the performance of a single task

Multiprocessing Fundamentals

Multiprocessor Types

* Loosely coupled multiprocessors
— No shared global memory address space

— Multicomputer network
* Network-based multiprocessors

— Usually programmed via message passing
e Explicit calls (send, receive) for communication

Multiprocessor Types (2)

* Tightly coupled multiprocessors
— Shared global memory address space

— Traditional multiprocessing: symmetric
multiprocessing (SMP)
* Existing multi-core processors, multithreaded processors
— Programming model similar to uniprocessors (i.e.,
multitasking uniprocessor) except
* Operations on shared data require synchronization

Main Issues in Tightly-Coupled MP

Shared memory synchronization
— Locks, atomic operations

Cache consistency
— More commonly called cache coherence

Ordering of memory operations
— What should the programmer expect the hardware to provide?

Resource sharing, contention, partitioning
Communication: Interconnection networks
Load imbalance

10

Metrics of Multiprocessors

11

Parallel Speedup

Time to execute the program with 1 processor
divided by
Time to execute the program with N processors

12

Parallel Speedup Example

e 3 X*+ax’+ax*+ax+a,

* Assume each operation 1 cycle, no
communication cost, each op can be executed in
a different processor

* How fast is this with a single processor?

— Assume no pipelining or concurrent execution of
instructions

13

R=q.x" + agx” + O, Sl B ¢ W (e

Swrgle preesse o 11 operatrms (da#gm?nph‘j

14

Parallel Speedup Example

4 3 2
ax*+ad+axt+ax+a,

Assume each operation 1 cycle, no

communication cost, each op can be executed in

a different processor

How fast is this with a single processor?

— Assume no pipelining or concurrent execution of
instructions

How fast is this with 3 processors?

15

)]

L6

Speedup with 3 Processors
T;g, = 5 Cydﬂéh_

Spe-cdup whih 3 vtessrs = 1 o s

ey
[

o
L_)
Cq

Is ™is a for compericen’

17

Dovicitinag tha Cincla_-Dracacenr Alaarvithrm

Rewisit Tt

ReMe— songle~porreesse algefinen:

28

I

Ga 2 D e e X™ & o M £ 0.

R :(((aﬁ‘}cdkﬂ-&))(. I*l' CILB)IL -t D,)X == ks

(Fernes's merhed)

Horner, “A new method of solving numerical equations of all orders, by continuous
approximation,” Philosophical Transactions of the Royal Society, 1819.

18

Takeaway

* To calculate parallel speedup fairly you need to
use the best known algorithm for each system
with N processors

* |f not, you can get superlinear speedup

20

Superlinear Speedup

* Can speedup be greater than P with P processing

elements? Parallel
. Speedup
* Consider: ¢
— Cache effects | Superlinear
— Memory effects ‘ 4 Typical

Success

— Working set

* Happens in two ways:
— Unfair comparisons

Sublinear

— Memory effects L. _—

—= # Processors

21

Caveats of Parallelism (1)

Spu.du? T

; .
| P& .-_,Fpmr_cssa-.s)

Why +re cealtg] (dvnmbhmg rehmns)

(o =ttt (1=)T
P

b ol i

4 |

s

Purallel f zalo e f’mf-}-}m
of the Smge-prrcessc
presyraen

L3 non- preatelezeole. oot

Amdahl’s Law

\SJOE-E—O(JP — T’ — . /{ P
't
P prc. Lp | -—;{"— P ""-"")
S pecdvp = |
.ﬁﬁ b 1 @"“ﬁ'f bdHeedk Fv" Prﬂb‘f

_ Speedp

Amdahl, “Validity of the single processor approach
to achieving large scale computing capabilities,”

AFIPS 1967. »

Amdahl’s Law

— f: Parallelizable fraction of a program
— P: Number of processors

1
Speedup =

* Maximum speedup limited by serial portion:
Serial bottleneck

25

Amdahl’s Law Implication 1

Speedap)

e BRI
== .aS
= <9

Arndahl's

L_onnN o
i Nushaiecd

ﬁrddmg Mot tnd more- -
processes Grres less @ Jess

bowe fidt- if o< L

26

Amdahl’s Law Implication 2

Specblp N . |
. & _ .
: p . :
. : PT' Tre bercfH- (_‘»pedvp)
/ I5 srall] @L%i_
' —
0)

27

Why the Sequential Bottleneck?

* Parallel machines have the
sequential bottleneck

* Main cause: Non-
parallelizable operations on
data (e.g. non-parallelizable

loops)
for(i=0;:i<N;i++)
Ali] = (A[i] + A[i-1]) / 2

* Single thread prepares data
28 { and spawns parallel tasks

28

Another Example of Sequential Bottleneck

InitPriorityQueue(PQ): LEGEND
A.E: Amdahl's serial part
SpawnThreads(); @ B: Parallel Portion
. C1,C2:; Critical Sections
Forkach Thread: D: Qutside critical section

-,

(while (problem not solved)
Lock (X)
SubProblem = PQ.remove(); @
Unlock(X);
Solve(SubProblem);
lf(problem solved) break; @ @
NewSubProblems = Partition(SubProblem);
Lock(X)
PQ.insert(NewSubProblems);| ()
Unlock(X)
®

PrintSolution(); @

(a)

L R) e PUT T T £ LT o 1 s m—

BSOS BSossS L =~ a9
e

L7) e — TTTTE 2 () i e—

t - t t t t t t t t
celn 0 1 2 3 4 5 f end

time

Caveats of Parallelism (ll)

* Amdahl’s Law
— f: Parallelizable fraction of a program

— P: Number of processors

1
Speedup = f

P

1-f +

* Parallel portion is usually not perfectly parallel
— Synchronization overhead (e.g., updates to shared data)
— Load imbalance overhead (imperfect parallelization)

— Resource sharing overhead (contention among N
pProcessors)

30

Bottlenecks in Parallel Portion

Synchronization: Operations manipulating shared data

cannot be parallelized

— Locks, mutual exclusion, barrier synchronization
— Communication: Tasks may need values from each other

Load Imbalance: Parallel tasks may have different lengths

— Due to imperfect parallelization or microarchitectural effects
— Reduces speedup in parallel portion

Resource Contention: Parallel tasks can share hardware
resources, delaying each other

— Replicating all resources (e.g., memory) expensive
— Additional latency not present when each task runs alone

31

Difficulty in Parallel Programming

* Little difficulty if parallelism is natural

I))

— “Embarrassingly parallel” applications
— Multimedia, physical simulation, graphics
— Large web servers, databases?
* Big difficulty is in
— Harder to parallelize algorithms
— Getting parallel programs to work correctly

— Optimizing performance in the presence of bottlenecks

* Much of parallel computer architecture is about

— Designing machines that overcome the sequential and parallel bottlenecks
to achieve higher performance and efficiency

— Making programmer’s job easier in writing correct and high-performance
parallel programs

32

Parallel and Serial Bottlenecks

* How do you alleviate some of the serial and parallel
bottlenecks in a multi-core processor?

* We will return to this question in future lectures
* Reading list:
— Annavaram et al., “Mitigating Amdahl’s Law Through EPI
Throttling,” ISCA 2005.

— Suleman et al., “Accelerating Critical Section Execution with
Asymmetric Multi-Core Architectures,” ASPLOS 2009.

— Joao et al., “Bottleneck Identification and Scheduling in
Multithreaded Applications,” ASPLOS 2012.

— Ipek et al., “Core Fusion: Accommodating Software Diversity
in Chip Multiprocessors,” ISCA 2007.

33

Multicores

34

Moore’s Law

MOORE'S LAW

1970 1975 1980 1985

loore, “Cramming more components onto integrated circuits,”
-lectronics, 1965.
35

Transistor count

Microprocessor Transistor Counts 1971-2011 & Moore’s Law

2,600,000,000
1,000,000,000

100,000,000 -

10,000,000

1,000,000 -

100,000 -

10,000 4

2,300 -

16-Cone SPARC T2
S Cone Cone i7
Elx-Corm Maon 7400

W10-Coma Kaon Wasiman-EX

Oual-Core Hanium 2
AMD K10
F'l:l'nl'.lEFIEu;b'

Harum 2 with M2 cacho il S0 2000
AMD KD 'xmif? |Eu5?um

EgFE Dluo

Tanium 2 @

Panlias L_ETF
"iﬂgﬁ-ul
curve shows transistar AMD KE
count doubling evary g, @ Pemum i
SEMD FS
L0048 R, 1802
| I T |)
1971 1980 1990 2000 2011

Date of introduction

36

Multi-Core

* |dea: Put multiple processors on the same die

* Technology scaling (Moore’s Law) enables more transistors to
be placed on the same die area

* What else could you do with the die area you dedicate to
multiple processors?
— Have a bigger, more powerful core
— Have larger caches in the memory hierarchy
— Simultaneous multithreading

— Integrate platform components on chip (e.g., network interface,
memory controllers)

37

Why Multi-Core?

* Alternative: Bigger, more powerful single core

— Larger superscalar issue width, larger instruction window,
more execution units, large trace caches, large branch
predictors, etc

+ Improves single-thread performance transparently to
programmer, compiler

38

Why Multi-Core?

* Alternative: Bigger, more powerful single core

- Very difficult to design (Scalable algorithms for improving
single-thread performance elusive)

- Power hungry - many out-of-order execution structures
consume significant power/area when scaled. Why?

- Diminishing returns on performance

- Does not significantly help memory-bound application
performance (Scalable algorithms for this elusive)

39

Large Superscalar+Oo0O vs. MultiCore

* Olukotun et al., “The Case for a Single-Chip
Multiprocessor.” ASPLOS 1996.

21 mm -] 21 mm -

[} . A I-Cache #1 [BR} | I-Cache #2 [BR]
Instruction e
External ' Cache Brmal
Instruction Interfaca
" | _(32KB) |
=22l " Fetch 32 KB
TLE — Processor | Processor —— —
% #1 #2 2
I — w (=]
@ InstF.‘ Decode & Data i @ i e
[ename Cache -] E &
5 ©2KB) | & S el £
D-Cache #1 (BK) | D-Cache #2 [8K)
mm | o O 20 mm | o 5 ache 73 (BK] | D-Gache #4 (K] © S
'é: Reorder Buffer, H 'é '% N
o Instruction Queues, = E— 5 o E—
and Out-of-Order Logic | = O 5 O
e - Processor | Processor = c
O #3 #4 = O
g
-]
= o
Floating Point |
Unit
Y | I-Cache #4 [BR) | I-Lache #4 (SR
Figure 2. Floorplan for the six-issue dynamic superscalar Figure 3. Floorplan for the four-way single-chip
Microprocessor. multiprocessor.

40

Multi-Core vs. Large Superscalar+OoO

* Multi-core advantages

+ Simpler cores [| more power efficient, lower
complexity, easier to design and replicate, higher
frequency (shorter wires, smaller structures)

+ Higher system throughput on multiprogrammed
workloads [] reduced context switches

+ Higher system performance in parallel applications

41

Multi-Core vs. Large Superscalar+OoO

* Multi-core disadvantages

- Requires parallel tasks/threads to improve
performance (parallel programming)

- Resource sharing can reduce single-thread
performance

- Shared hardware resources need to be managed

- Number of pins limits data supply for increased
demand

42

Comparison Points...

6-way S5 4x2-way MP
of CPUs 1 4
Degree superscalar 6 4x2
of architectural registers 32int / 32fp 4 x 32int / 324p
of physical registers 160int / 160fp 4 x 40int / 40fp
of integer functional units 3 4x1
of floating pt. functional units 3 4x1
of load/store ports 8 (one per bank) 4x1
BTB size 2048 entries 4 x 512 entries
Return stack size 32 entries 4 x 8 enfries
Instruction issue queue size 128 entries 4 x 8 entries

I cache 32KB.2-way S . A. 4x8KB,2way 5. A.
D cache 32KB,2-way 5_A. 4x8KB,.2-way S_A.
L1 hit time 2 cycles (4 ns) 1 cycle (2 ns)

L1 cache interleaving 8 banks N/A

Unified 1.2 cache

256 KB, 2-way 5. A.

256 KB, 2-way S_A.

L2 hat time / L1 penalty 4 cycles (8 ns) 5 cycles (10 ns)
Memory latency / L2 penalty 50 cycles (100 ns) 30 cycles (100 ns)
T~.1L1-~ 1 | P e . I - I U [

43

Why Multi-Core?
* Alternative: Bigger caches

+ Improves single-thread performance transparently to
programmer, compiler

+ Simple to design

- Diminishing single-thread performance returns from
cache size. Why?

- Multiple levels complicate memory hierarchy

44

Cache vs. Core

45

Why Multi-Core?

* Alternative: (Simultaneous) Multithreading
+ Exploits thread-level parallelism (just like multi-core)
+ Good single-thread performance with SMT
+ No need to have an entire core for another thread
+ Parallel performance aided by tight sharing of caches

46

Why Multi-Core?

* Alternative: (Simultaneous) Multithreading

- Scalability is limited: need bigger register files, larger
issue width (and associated costs) to have many
threads [] complex with many threads

- Parallel performance limited by shared fetch
bandwidth

- Extensive resource sharing at the pipeline and
memory system reduces both single-thread and
parallel application performance

47

Why Multi-Core?

* Alternative: Integrate platform components on
chip instead

+ Speeds up many system functions (e.g., network
interface cards, Ethernet controller, memory
controller, 1/0 controller)

- Not all applications benefit (e.g., CPU intensive code
sections)

438

Why Multi-Core?

* Alternative: Traditional symmetric
multiprocessors

+ Smaller die size (for the same processing core)
+ More memory bandwidth (no pin bottleneck)

+ Fewer shared resources [] less contention between
threads

49

Why Multi-Core?

* Alternative: Traditional symmetric
multiprocessors

- Long latencies between cores (need to go off chip) []
shared data accesses limit performance [] parallel
application scalability is limited

- Worse resource efficiency due to less sharing [| worse
power/energy efficiency

50

Why Multi-Core?

* Other alternatives?
— Clustering?
— Dataflow? EDGE?
— Vector processors (SIMD)?
— Integrating DRAM on chip?
— Reconfigurable logic? (general purpose?)
— Specialized accelerators (e.g., ML, JPEG encoding etc)

51

Review next week

«

Exploiting ILP, TLP, and DLP with the polymorp
hous TRIPS architecture

” K. Sankaralingam, ISCA 2003.

https://scholar.google.com/scholar?oi=bibs&cluster=7563235349873311739&btnI=1&hl=en
https://scholar.google.com/scholar?oi=bibs&cluster=7563235349873311739&btnI=1&hl=en

Summary: Multi-Core Alternatives

Bigger, more powerful single core
Bigger caches
(Simultaneous) multithreading

Integrate platform components on chip instead

More scalable superscalar, out-of-order engines

Traditional symmetric multiprocessors
And more!

53

Multicore Examples

54

Multiple Cores on Chip

* Simpler and lower power than a single large core
. Large scale parallellsm on chlp

: Intel Core i7 IBM Cell BE IBM POWER7
AMD Barcelona 8 cores 8+1 cores 8 cores

_4 cores

| pgtatgtgegty
Ay . cEer o
i Nvidia Fermi Intel SCC Tilera TILE Gx
Sun Niagara 448 “cores” 48 cores, networked 100 cores, networked

8 cores
55

With Multiple Cores on Chip

* What we want:

— N times the performance with N times the cores
when we parallelize an application on N cores

* What we get:
— Amdahl’s Law (serial bottleneck)
— Bottlenecks in the parallel portion

56

The Problem: Serialized Code Sections

* Many parallel programs cannot be parallelized completely

* Causes of serialized code sections
— Sequential portions (Amdahl’s “serial part”)
— Critical sections
— Barriers
— Limiter stages in pipelined programs
* Serialized code sections
— Reduce performance
— Limit scalability
— Waste energy

57

Demands in Different Code Sections

* What we want:
* |n a serialized code section [| one powerful “large” core

* |In a parallel code section [] many wimpy “small” cores
* These two conflict with each other:

— If you have a single powerful core, you cannot have many
cores

— A small core is much more energy and area efficient than a
large core

58

“Large” vs. “Small” Cores

Large Small
Core Core
. t-of-order .
. SVLIIdeO feotccfi)ee.g. 4- In-order .
wide * Narrow Fetch e.g. 2-wide
* Deeper pipeline * Shallow pipeline
’ Aggcgesésive branch * Simple branch predictor
ﬁ;%r;ccj)or (e.g. (e.g. Gshare)
* Multiple functional * Few functional units
units
o Twvco concha

]] [\
Large Cores are power inefficient:
e.g., 2x performance for 4x area (power) |.,
J

Meet Small: Sun Niagara (UltraSPARC T1)

* Kongetira et al., “Niagara: A 32-Way Multithreaded
SPARC Processor,” IEEE Micro 2005.

i?'fi;cypl':-'lp'l‘? - - Dram control el

L2 B0 Channal &
Sparc pipe -
Ay MT
Sparc pipe ; CCA
4-way MT - - DG‘:-:; t:l:.';t;:nl

L2 Bi1
Sparc pipe i P
A-weay MT a3

; =]

5 3 CCAR
-‘-I-:l-:r;cypl'-:-'lp? - - - Diram contral

Lz B2 Channel 2
Sparc pipe -
d-wiay MT
Sparc pipe ; COR
d-wiay MT & P Dc.ct_lrg_-lzrli:t;nl

L2 B3
Sparc pipe -
d-way MT

]
1YY
'O and shared functions ey
I intarface 6 O

Niagara Core

* 4-way fine-grain multithreaded, 6-stage, dual-issue in-order
* Round robin thread selection (unless cache miss)
* Shared FP unit among cores

| | 1 | | |

Fatch | Thraad select

Cecode Execute Memiary Writaback
Ragister
fila
wd
~_ 3 1y
iCache | |Instuction [T™|) [N 5 DGache)
e butfer = 4 || Thread MUL - DTLB Crossbar
select = Decode [~ Shifter store interface
bt WL p - 1 bubers x4
J) o
1

B
-+—— |nstruction bype
Thread selects Thread g ptisses

salact
}/ logic -a—— Traps and intarrupts

i -a—— Heasource conflicts
.
| PG
Thread |-=+— logic
select | x4
Mux =
-

Niagara Design Point

Table 1. Commercial server applications.

Instruction-lavel Thread-lavel Working Data
Banchmark Application category parallelism parallalism sat sharing
WebbS Weab server Low High Large Lo
JaB Jaws application server Low High Large hadium
TPC-C Transaction processing Lowy High Large High
SAP-2T Entarprise resource planning Medium High Medium hadium
oAP-3T Entarprise resource planning Lo High Large High
TPC-H Decision support systam High High Large hadium
Single
issue C M C M C M
LPE M € MGC M |-
TLP (& M
{on shared . Time saved
single issue c M T =)
pipeline) C M
-

] Memory latency [Compute latency

62

Meet Small: Sun Niagara Il (UItraSPARC T2)

8 SPARC cores, 8
~ threads/core. 8 stages. 16 KB
e M -] |$ per Core. 8 KB D$ per Core.

= |_2 Daté'"'. L2fiA = 8 L gE ik B il F
Bank0 |p B 1.5 & ~i'Banka | .)
w280 | SPANG [SPAHE SPARE .LJW;,;::.:.._\ o FP, Graphics, Crypto, units per

L2B4
L2 Data’- | (COFHS “Corets L2 Data - | Core.
Bank 1 |E=g I

'™ s I .= "
ZOfe D “Lore £

Bank' s

281 | BEEEEE B SRS L2B5

mcuo [l L2 L2 - ERAEEE P * 4 MB Shared L2, 8 banks, 16-

U TAGO

wal,
o
Py g’
P
..
="
wlg’
-
waly 1 e
:

Ee way set associative.
L2B7
M9 DataT | _) L2 Data

SEmiETTemm!

L ey | i * 4 dual-channel FBDIMM
B A | A 6 -
, e R e A s ki memory controllers.

Bank 6

:;P.AF‘{,,. SPARS *' o’ HRC SPARC

L b b)| X8 PCl-Express @ 2.5 Gbls.

| ':n*::iii.i:‘n:' 1t _ [. Two 10G Ethernet ports @
3.125 Gb/s.

63

Meet Small, but Larger: Sun ROCK

* Chaudhry et al., “Simultaneous Speculative Threading: A Novel Pipeline
Architecture Implemented in Sun's ROCK Processor,” ISCA 2009

e Goals:

— Maximize throughput when threads are available

— Boost single-thread performance when threads are not
available and on cache misses

* |deas:

— Runahead on a cache miss [| ahead thread executes miss-

independent instructions, behind thread executes dependent
instructions

— Branch prediction (gshare)

64

Sun ROCK

512 KB

L2$ Bnk

B
L2$ Bnk L2$ Bnk

(o1 (et e et

Bnk

16 cores, 2 threads per
core (fewer threads
than Niagara 2)

4 cores share a 32KB
instruction cache

2 cores share a 32KB
data cache

2MB L2 cache (smaller
than Niagara 2)

65

More Powerful Cores in Sun ROCK

m 1VIDNANINOD
W d2c dvs
g dzc g4dr

"H..ﬁ..ﬁm..m," dZ€ dL10

i TVIDNAWNINOD
o d8 dVS
o 48 gdr

N J8 41710

Commercial Performance.

Figure 9

66

Meet Large: IBM POWER4

* Tendler et al., “POWER4 system microarchitecture,” IBM J R&D,
2002.

—
* Another symmetric multi-core chip... T (.
* But, fewer and more powerful cores - ,|
| Imstruction quews
uuuuuuu — s
Lay IFetch Siome S
-l i R R e
e (LA 14 1 2 TR
o L qeis qwes quess g
21 5 g [A i S S S
E § § § § § & %
et T T ﬁg ﬁg rzg ﬁg ﬁg Eg E-g Eg
{:""ﬂw, ,,,,,,,,,,,,,, :":.]
‘Tcrn.[i: i} — %ﬁéﬁ‘
o | Tt “ oy mn *“——"‘—*—.}“"" e

67

IBM POWERA4

2 cores, out-of-order execution

100-entry instruction window in each core
8-wide instruction fetch, issue, execute
Large, local+global hybrid branch predictor
1.5MB, 8-way L2 cache

Aggressive stream based prefetching

638

IBM POWERS

= Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE Micro 2004.

e Dynamic
Branch prediction | i
salection
Shared S
Program Aeturn Target it axacution
counter stack cache queuss units
== — T i iy LSUD Dm Dam
S Aliemate [Fxudl Translation Cache
Instruction =0
: buffer O i
Instruction !Gmm}_fnrmam:rn ¥ . Tl |F}¢:I._|1| L Group Store
L nstruction decode [— * ;: % w Sy i
Dispatch FPUD gty 53
Instruction FPU1
translation T = Rw
| BxU |
Thread | CAL Data Data
pricrity Shared- Read Wite: translation | | cache
register shared- shared- l_
mappers register files register files Lo
cache

[| Shared by two threads [Thread 0 resources [Thread 1 resourcas

Figure 4. Powerh instruction data flow (BXU = branch execution unit and CBL = condition register logical execution unit).

69

Large, but Smaller: IBM POWER6

Le et al., “IBM POWER6
microarchitecture,” IBM J R&D,
2007.

2 cores, in order, high frequency
(4.7 GHz)

8 wide fetch

Simultaneous multithreading in
each core

Runahead execution in each core

— Similar to Sun ROCK

POWERS chip

High- High-
frequency | | frequency
POWERS | [POWERS

SMT2 SMT2

LUTe LoTe

e

~2-MB L2

POWERS chip

Ultrahigh-
frequency
POWERS
SMT2
core

UMtrahigh-
frequency
POWERDSG
SMT2
core

Ja-MB
L3
controller

SMMP interconnect
fabnc

36-MB L3 chip

4-MB L2

4-MB L2

32-MB
L3
controller

32-MB L3 chip(s) |

]

Memory controller

|

Buffer
chips

SMP interconnect
fabric

]
¥

Memory
controller

Memory
controller

1

BufTer
chips

Buffer
chips

70

Many More...

* Wimpy nodes: Tilera
* Asymmetric multicores

* DVFS

Computer Architecture Today

* Today is a very exciting time to study computer
architecture

* |ndustry is in a large paradigm shift (to multi-core,
hardware acceleration and beyond) - many different
potential system designs possible

* Many difficult problems caused by the shift
— Power/energy constraints [| multi-core?, accelerators?
— Complexity of design [] multi-core?
— Difficulties in technology scaling [] new technologies?
— Memory wall/gap
— Reliability wall/issues
— Programmability wall/problem [] single-core?

72

Computer Architecture Today (2)

* These problems affect all parts of the computing stack -
if we do not change the way we design systems

Problem
Algorithm
Program/Languacg

Runtime System
(VM, OS, MM)

ISA
Microarchitecture

Logic

Circuits
Electrons

73

Computer Architecture Today (3)

* You can revolutionize the way computers are built, if you
understand both the hardware and the software

* You can invent new paradigms for computation,
communication, and storage

e Recommended book: Kuhn, “The Structure of Scientific
Revolutions” (1962)
— Pre-paradigm science: no clear consensus in the field

— Normal science: dominant theory used to explain things
(business as usual); exceptions considered anomalies

— Revolutionary science: underlying assumptions re-examined

74

... but, first ...

* Let’s understand the fundamentals...

* You can change the world only if you understand
it well enough...

— Especially the past and present dominant paradigms
— And, their advantages and shortcomings -- tradeoffs

73

Paper to review next (Sept. 29t")

* Exploiting ILP, TLP, and DLP with the
polymorphous TRIPS architecture

by Karthikeyan Sankaralinga et al.,
ISCA 2003.

76

http://www.cs.toronto.edu/~pekhimenko/courses/csc2224-f19/docs/TRIPS.pdf
http://www.cs.toronto.edu/~pekhimenko/courses/csc2224-f19/docs/TRIPS.pdf

CSC 2224: Parallel Computer
Architecture and Programming
Parallel Processing, Multicores

Prof. Gennady Pekhimenko
University of Toronto
Fall 2022

The content of this lecture is adapted from the lectures of
Onur Mutlu @ CMU

Asymmetric Multi-Core

Asymmetric Chip Multiprocessor (ACMP)

Small | Small | Small | Small Small | Small
core core core core core core
Large Large Large
core core Small | Small | Small | Small core Small | Small
core core core core core core
Small | Small | Small | Small Small | Small | Small | Small
core core core core core core core core
Large Large
core core Small | Small | Small | Small Small | Small | Small | Small
core core core core core core core core
“Tile-Large” “Tile-Small” ACMP

* Provide one large core and many small cores
+ Accelerate serial part using the large core (2 units)

+ Execute parallel part on small cores and large core for high
throughput (1242 units)

79

	CSC 2224: Parallel Computer Architecture and Programming Parall
	Summary
	Flynn’s Taxonomy of Computers
	Why Parallel Computers?
	Types of Parallelism & How to Exploit Them
	Task-Level Parallelism
	Multiprocessing Fundamentals
	Multiprocessor Types
	Multiprocessor Types (2)
	Main Issues in Tightly-Coupled MP
	Metrics of Multiprocessors
	Parallel Speedup
	Parallel Speedup Example
	Slide 14
	Parallel Speedup Example (2)
	Slide 16
	Speedup with 3 Processors
	Revisiting the Single-Processor Algorithm
	Slide 19
	Takeaway
	Superlinear Speedup
	Caveats of Parallelism (I)
	Amdahl’s Law
	Amdahl’s Law (2)
	Amdahl’s Law Implication 1
	Amdahl’s Law Implication 2
	Why the Sequential Bottleneck?
	Another Example of Sequential Bottleneck
	Caveats of Parallelism (II)
	Bottlenecks in Parallel Portion
	Difficulty in Parallel Programming
	Parallel and Serial Bottlenecks
	Multicores
	Moore’s Law
	Slide 36
	Multi-Core
	Why Multi-Core?
	Why Multi-Core? (2)
	Large Superscalar+OoO vs. MultiCore
	Multi-Core vs. Large Superscalar+OoO
	Multi-Core vs. Large Superscalar+OoO (2)
	Comparison Points…
	Why Multi-Core? (3)
	Cache vs. Core
	Why Multi-Core? (4)
	Why Multi-Core? (5)
	Why Multi-Core? (6)
	Why Multi-Core? (7)
	Why Multi-Core? (8)
	Why Multi-Core? (9)
	Review next week
	Summary: Multi-Core Alternatives
	Multicore Examples
	Multiple Cores on Chip
	With Multiple Cores on Chip
	The Problem: Serialized Code Sections
	Demands in Different Code Sections
	“Large” vs. “Small” Cores
	Meet Small: Sun Niagara (UltraSPARC T1)
	Niagara Core
	Niagara Design Point
	Meet Small: Sun Niagara II (UltraSPARC T2)
	Meet Small, but Larger: Sun ROCK
	Sun ROCK
	More Powerful Cores in Sun ROCK
	Meet Large: IBM POWER4
	IBM POWER4
	IBM POWER5
	Large, but Smaller: IBM POWER6
	Many More…
	Computer Architecture Today
	Computer Architecture Today (2)
	Computer Architecture Today (3)
	… but, first …
	Paper to review next (Sept. 29th)
	CSC 2224: Parallel Computer Architecture and Programming Parall (2)
	Asymmetric Multi-Core
	Asymmetric Chip Multiprocessor (ACMP)

