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Summary

* Parallelism
* Multiprocessing fundamentals
* Amdahl’s Law

* Why Multicores?

— Alternatives
— Examples



Flynn’s Taxonomy of Computers

* Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE,
1966
* SISD: Single instruction operates on single data element
* SIMD: Single instruction operates on multiple data elements
— Array processor
— Vector processor
* MISD: Multiple instructions operate on single data element
— Closest form: systolic array processor, streaming processor

* MIMD: Multiple instructions operate on multiple data elements
(multiple instruction streams)

— Multiprocessor
— Multithreaded processor



Why Parallel Computers?

Parallelism: Doing multiple things at a time
Things: instructions, operations, tasks

Main Goal: Improve performance (Execution time or task
throughput)

* Execution time of a program governed by Amdahl’s Law
Other Goals
— Reduce power consumption
* (4N units at freq F/4) consume less power than (N units at
freq F)
* Why?
— Improve cost efficiency and scalability, reduce complexity

* Harder to design a single unit that performs as well as N
simpler units



Types of Parallelism & How to Exploit Them

* |nstruction Level Parallelism

— Different instructions within a stream can be executed in parallel
— Pipelining, out-of-order execution, speculative execution, VLIW
— Dataflow

 Data Parallelism

— Different pieces of data can be operated on in parallel
— SIMD: Vector processing, array processing
— Systolic arrays, streaming processors

* Task Level Parallelism

— Different “tasks/threads” can be executed in parallel
— Multithreading
— Multiprocessing (multi-core)



Task-Level Parallelism

* Partition a single problem into multiple related tasks
(threads)
— Explicitly: Parallel programming
* Easy when tasks are natural in the problem
* Difficult when natural task boundaries are unclear

— Transparently/implicitly: Thread level speculation
* Partition a single thread speculatively

* Run many independent tasks (processes) together

— Easy when there are many processes
* Batch simulations, different users, cloud computing

— Does not improve the performance of a single task



Multiprocessing Fundamentals



Multiprocessor Types

* Loosely coupled multiprocessors
— No shared global memory address space

— Multicomputer network
* Network-based multiprocessors

— Usually programmed via message passing
e Explicit calls (send, receive) for communication



Multiprocessor Types (2)

* Tightly coupled multiprocessors
— Shared global memory address space

— Traditional multiprocessing: symmetric
multiprocessing (SMP)
* Existing multi-core processors, multithreaded processors
— Programming model similar to uniprocessors (i.e.,
multitasking uniprocessor) except
* Operations on shared data require synchronization



Main Issues in Tightly-Coupled MP

Shared memory synchronization
— Locks, atomic operations

Cache consistency
— More commonly called cache coherence

Ordering of memory operations
— What should the programmer expect the hardware to provide?

Resource sharing, contention, partitioning
Communication: Interconnection networks
Load imbalance
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Metrics of Multiprocessors
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Parallel Speedup

Time to execute the program with 1 processor
divided by
Time to execute the program with N processors
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Parallel Speedup Example

e 3 X*+ax’+ax*+ax+a,

* Assume each operation 1 cycle, no
communication cost, each op can be executed in
a different processor

* How fast is this with a single processor?

— Assume no pipelining or concurrent execution of
instructions
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Parallel Speedup Example

4 3 2
ax*+ad+axt+ax+a,

Assume each operation 1 cycle, no

communication cost, each op can be executed in

a different processor

How fast is this with a single processor?

— Assume no pipelining or concurrent execution of
instructions

How fast is this with 3 processors?
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Takeaway

* To calculate parallel speedup fairly you need to
use the best known algorithm for each system
with N processors

* |f not, you can get superlinear speedup
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Superlinear Speedup

* Can speedup be greater than P with P processing

elements? Parallel
. Speedup
* Consider: ¢
— Cache effects | Superlinear
— Memory effects ‘ 4 Typical

Success

— Working set

* Happens in two ways:
— Unfair comparisons

Sublinear

— Memory effects L. _—

—= # Processors
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Caveats of Parallelism (1)
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Amdahl’s Law
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Amdahl’s Law

— f: Parallelizable fraction of a program
— P: Number of processors

1
Speedup =

* Maximum speedup limited by serial portion:
Serial bottleneck
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Amdahl’s Law Implication 1
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Amdahl’s Law Implication 2
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Why the Sequential Bottleneck?

* Parallel machines have the
sequential bottleneck

* Main cause: Non-
parallelizable operations on
data (e.g. non-parallelizable

loops)
for(i=0;:i<N;i++)
Ali] = (A[i] + A[i-1]) / 2

* Single thread prepares data
28 { and spawns parallel tasks
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Another Example of Sequential Bottleneck

InitPriorityQueue(PQ): LEGEND
A.E: Amdahl's serial part
SpawnThreads(); @ B: Parallel Portion
. C1,C2:; Critical Sections
Forkach Thread: D: Qutside critical section

-,

( while (problem not solved)
Lock (X)
SubProblem = PQ.remove(); @
Unlock(X);
Solve(SubProblem);
lf(problem solved) break; @ @
NewSubProblems = Partition(SubProblem);
Lock(X)
PQ.insert(NewSubProblems);| ()
Unlock(X)
®

PrintSolution(); @

(a)
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Caveats of Parallelism (ll)

* Amdahl’s Law
— f: Parallelizable fraction of a program

— P: Number of processors

1
Speedup = f

P

1-f +

* Parallel portion is usually not perfectly parallel
— Synchronization overhead (e.g., updates to shared data)
— Load imbalance overhead (imperfect parallelization)

— Resource sharing overhead (contention among N
pProcessors)
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Bottlenecks in Parallel Portion

Synchronization: Operations manipulating shared data

cannot be parallelized

— Locks, mutual exclusion, barrier synchronization
— Communication: Tasks may need values from each other

Load Imbalance: Parallel tasks may have different lengths

— Due to imperfect parallelization or microarchitectural effects
— Reduces speedup in parallel portion

Resource Contention: Parallel tasks can share hardware
resources, delaying each other

— Replicating all resources (e.g., memory) expensive
— Additional latency not present when each task runs alone
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Difficulty in Parallel Programming

* Little difficulty if parallelism is natural

I))

— “Embarrassingly parallel” applications
— Multimedia, physical simulation, graphics
— Large web servers, databases?
* Big difficulty is in
— Harder to parallelize algorithms
— Getting parallel programs to work correctly

— Optimizing performance in the presence of bottlenecks

* Much of parallel computer architecture is about

— Designing machines that overcome the sequential and parallel bottlenecks
to achieve higher performance and efficiency

— Making programmer’s job easier in writing correct and high-performance
parallel programs
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Parallel and Serial Bottlenecks

* How do you alleviate some of the serial and parallel
bottlenecks in a multi-core processor?

* We will return to this question in future lectures
* Reading list:
— Annavaram et al., “Mitigating Amdahl’s Law Through EPI
Throttling,” ISCA 2005.

— Suleman et al., “Accelerating Critical Section Execution with
Asymmetric Multi-Core Architectures,” ASPLOS 2009.

— Joao et al., “Bottleneck Identification and Scheduling in
Multithreaded Applications,” ASPLOS 2012.

— Ipek et al., “Core Fusion: Accommodating Software Diversity
in Chip Multiprocessors,” ISCA 2007.
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Multicores
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Moore’s Law

MOORE'S LAW

1970 1975 1980 1985

loore, “Cramming more components onto integrated circuits,”
-lectronics, 1965.
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Transistor count

Microprocessor Transistor Counts 1971-2011 & Moore’s Law
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Multi-Core

* |dea: Put multiple processors on the same die

* Technology scaling (Moore’s Law) enables more transistors to
be placed on the same die area

* What else could you do with the die area you dedicate to
multiple processors?
— Have a bigger, more powerful core
— Have larger caches in the memory hierarchy
— Simultaneous multithreading

— Integrate platform components on chip (e.g., network interface,
memory controllers)
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Why Multi-Core?

* Alternative: Bigger, more powerful single core

— Larger superscalar issue width, larger instruction window,
more execution units, large trace caches, large branch
predictors, etc

+ Improves single-thread performance transparently to
programmer, compiler

38



Why Multi-Core?

* Alternative: Bigger, more powerful single core

- Very difficult to design (Scalable algorithms for improving
single-thread performance elusive)

- Power hungry - many out-of-order execution structures
consume significant power/area when scaled. Why?

- Diminishing returns on performance

- Does not significantly help memory-bound application
performance (Scalable algorithms for this elusive)
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Large Superscalar+Oo0O vs. MultiCore

* Olukotun et al., “The Case for a Single-Chip
Multiprocessor.” ASPLOS 1996.
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Multi-Core vs. Large Superscalar+OoO

* Multi-core advantages

+ Simpler cores [ | more power efficient, lower
complexity, easier to design and replicate, higher
frequency (shorter wires, smaller structures)

+ Higher system throughput on multiprogrammed
workloads [] reduced context switches

+ Higher system performance in parallel applications
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Multi-Core vs. Large Superscalar+OoO

* Multi-core disadvantages

- Requires parallel tasks/threads to improve
performance (parallel programming)

- Resource sharing can reduce single-thread
performance

- Shared hardware resources need to be managed

- Number of pins limits data supply for increased
demand

42



Comparison Points...

6-way S5 4x2-way MP
# of CPUs 1 4
Degree superscalar 6 4x2
# of architectural registers 32int / 32fp 4 x 32int / 324p
# of physical registers 160int / 160fp 4 x 40int / 40fp
# of integer functional units 3 4x1
# of floating pt. functional units 3 4x1
# of load/store ports 8 (one per bank) 4x1
BTB size 2048 entries 4 x 512 entries
Return stack size 32 entries 4 x 8 enfries
Instruction issue queue size 128 entries 4 x 8 entries

I cache 32KB.2-way S . A. 4x8KB,2way 5. A.
D cache 32KB,2-way 5_A. 4x8KB,.2-way S_A.
L1 hit time 2 cycles (4 ns) 1 cycle (2 ns)

L1 cache interleaving 8 banks N/A

Unified 1.2 cache

256 KB, 2-way 5. A.

256 KB, 2-way S_A.

L2 hat time / L1 penalty 4 cycles (8 ns) 5 cycles (10 ns)
Memory latency / L2 penalty 50 cycles (100 ns) 30 cycles (100 ns)
T~.1L1-~ 1 | P e . I - I U [
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Why Multi-Core?
* Alternative: Bigger caches

+ Improves single-thread performance transparently to
programmer, compiler

+ Simple to design

- Diminishing single-thread performance returns from
cache size. Why?

- Multiple levels complicate memory hierarchy

44



Cache vs. Core
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Why Multi-Core?

* Alternative: (Simultaneous) Multithreading
+ Exploits thread-level parallelism (just like multi-core)
+ Good single-thread performance with SMT
+ No need to have an entire core for another thread
+ Parallel performance aided by tight sharing of caches
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Why Multi-Core?

* Alternative: (Simultaneous) Multithreading

- Scalability is limited: need bigger register files, larger
issue width (and associated costs) to have many
threads [] complex with many threads

- Parallel performance limited by shared fetch
bandwidth

- Extensive resource sharing at the pipeline and
memory system reduces both single-thread and
parallel application performance
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Why Multi-Core?

* Alternative: Integrate platform components on
chip instead

+ Speeds up many system functions (e.g., network
interface cards, Ethernet controller, memory
controller, 1/0 controller)

- Not all applications benefit (e.g., CPU intensive code
sections)
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Why Multi-Core?

* Alternative: Traditional symmetric
multiprocessors

+ Smaller die size (for the same processing core)
+ More memory bandwidth (no pin bottleneck)

+ Fewer shared resources [ ] less contention between
threads

49



Why Multi-Core?

* Alternative: Traditional symmetric
multiprocessors

- Long latencies between cores (need to go off chip) []
shared data accesses limit performance [] parallel
application scalability is limited

- Worse resource efficiency due to less sharing [ | worse
power/energy efficiency
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Why Multi-Core?

* Other alternatives?
— Clustering?
— Dataflow? EDGE?
— Vector processors (SIMD)?
— Integrating DRAM on chip?
— Reconfigurable logic? (general purpose?)
— Specialized accelerators (e.g., ML, JPEG encoding etc)
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Review next week

«

Exploiting ILP, TLP, and DLP with the polymorp
hous TRIPS architecture

” K. Sankaralingam, ISCA 2003.



https://scholar.google.com/scholar?oi=bibs&cluster=7563235349873311739&btnI=1&hl=en
https://scholar.google.com/scholar?oi=bibs&cluster=7563235349873311739&btnI=1&hl=en

Summary: Multi-Core Alternatives

Bigger, more powerful single core
Bigger caches
(Simultaneous) multithreading

Integrate platform components on chip instead

More scalable superscalar, out-of-order engines

Traditional symmetric multiprocessors
And more!
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Multicore Examples
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Multiple Cores on Chip

* Simpler and lower power than a single large core
. Large scale parallellsm on chlp

: Intel Core i7 IBM Cell BE IBM POWER7
AMD Barcelona 8 cores 8+1 cores 8 cores

_4 cores

| pgtatgtgegty
Ay . cEer o
i Nvidia Fermi Intel SCC Tilera TILE Gx
Sun Niagara 448 “cores” 48 cores, networked 100 cores, networked

8 cores
55



With Multiple Cores on Chip

* What we want:

— N times the performance with N times the cores
when we parallelize an application on N cores

* What we get:
— Amdahl’s Law (serial bottleneck)
— Bottlenecks in the parallel portion

56



The Problem: Serialized Code Sections

* Many parallel programs cannot be parallelized completely

* Causes of serialized code sections
— Sequential portions (Amdahl’s “serial part”)
— Critical sections
— Barriers
— Limiter stages in pipelined programs
* Serialized code sections
— Reduce performance
— Limit scalability
— Waste energy

57



Demands in Different Code Sections

* What we want:
* |n a serialized code section [| one powerful “large” core

* |In a parallel code section [] many wimpy “small” cores
* These two conflict with each other:

— If you have a single powerful core, you cannot have many
cores

— A small core is much more energy and area efficient than a
large core

58



“Large” vs. “Small” Cores

Large Small
Core Core
. t-of-order .
. SVLIIdeO feotccfi)ee.g. 4- In-order .
wide * Narrow Fetch e.g. 2-wide
* Deeper pipeline * Shallow pipeline
’ Aggcgesésive branch * Simple branch predictor
ﬁ;%r;ccj)or (e.g. (e.g. Gshare)
* Multiple functional * Few functional units
units
o Twvco concha

] ] [ \
Large Cores are power inefficient:
e.g., 2x performance for 4x area (power) |.,
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Meet Small: Sun Niagara (UltraSPARC T1)

* Kongetira et al., “Niagara: A 32-Way Multithreaded
SPARC Processor,” IEEE Micro 2005.
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Niagara Core

* 4-way fine-grain multithreaded, 6-stage, dual-issue in-order
* Round robin thread selection (unless cache miss)
* Shared FP unit among cores

| | 1 | | |

Fatch | Thraad select

Cecode Execute Memiary Writaback
Ragister
fila
wd
~_ 3 1y
iCache | |Instuction [ T™| ) [ N 5 DGache )
e butfer = 4 || Thread MUL - DTLB Crossbar
select = Decode [~ Shifter store interface
bt WL p - 1 bubers x4
J ) o
1

B
-+—— |nstruction bype
Thread selects Thread g  ptisses

salact
}/ logic -a—— Traps and intarrupts

i -a—— Heasource conflicts
.
| PG
Thread |-=+— logic
select | x4
Mux =
-




Niagara Design Point

Table 1. Commercial server applications.

Instruction-lavel Thread-lavel Working Data
Banchmark Application category parallelism parallalism sat sharing
WebbS Weab server Low High Large Lo
JaB Jaws application server Low High Large hadium
TPC-C Transaction processing Lowy High Large High
SAP-2T Entarprise resource planning Medium High Medium hadium
oAP-3T Entarprise resource planning Lo High Large High
TPC-H Decision support systam High High Large hadium
Single
issue C M C M C M
LPE M € MGC M |-
TLP (& M
{on shared . Time saved
single issue c M T =)
pipeline) C M
-

] Memory latency [ Compute latency
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Meet Small: Sun Niagara Il (UItraSPARC T2)

8 SPARC cores, 8
~ threads/core. 8 stages. 16 KB
e M -] |$ per Core. 8 KB D$ per Core.
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Meet Small, but Larger: Sun ROCK

* Chaudhry et al., “Simultaneous Speculative Threading: A Novel Pipeline
Architecture Implemented in Sun's ROCK Processor,” ISCA 2009

e Goals:

— Maximize throughput when threads are available

— Boost single-thread performance when threads are not
available and on cache misses

* |deas:

— Runahead on a cache miss [| ahead thread executes miss-

independent instructions, behind thread executes dependent
instructions

— Branch prediction (gshare)
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Sun ROCK

512 KB

L2$ Bnk

B
L2$ Bnk L2$ Bnk

(o1 (et e et

Bnk

16 cores, 2 threads per
core (fewer threads
than Niagara 2)

4 cores share a 32KB
instruction cache

2 cores share a 32KB
data cache

2MB L2 cache (smaller
than Niagara 2)
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More Powerful Cores in Sun ROCK
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Meet Large: IBM POWER4

* Tendler et al., “POWER4 system microarchitecture,” IBM J R&D,
2002.

—
* Another symmetric multi-core chip... T (.
* But, fewer and more powerful cores - ,|
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IBM POWERA4

2 cores, out-of-order execution

100-entry instruction window in each core
8-wide instruction fetch, issue, execute
Large, local+global hybrid branch predictor
1.5MB, 8-way L2 cache

Aggressive stream based prefetching
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IBM POWERS

= Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE Micro 2004.
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Figure 4. Powerh instruction data flow (BXU = branch execution unit and CBL = condition register logical execution unit).
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Large, but Smaller: IBM POWER6

Le et al., “IBM POWER6
microarchitecture,” IBM J R&D,
2007.

2 cores, in order, high frequency
(4.7 GHz)

8 wide fetch

Simultaneous multithreading in
each core

Runahead execution in each core

— Similar to Sun ROCK
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Many More...

* Wimpy nodes: Tilera
* Asymmetric multicores

* DVFS



Computer Architecture Today

* Today is a very exciting time to study computer
architecture

* |ndustry is in a large paradigm shift (to multi-core,
hardware acceleration and beyond) - many different
potential system designs possible

* Many difficult problems caused by the shift
— Power/energy constraints [| multi-core?, accelerators?
— Complexity of design [] multi-core?
— Difficulties in technology scaling [ ] new technologies?
— Memory wall/gap
— Reliability wall/issues
— Programmability wall/problem [] single-core?
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Computer Architecture Today (2)

* These problems affect all parts of the computing stack -
if we do not change the way we design systems

Problem
Algorithm
Program/Languacg

Runtime System
(VM, OS, MM)

ISA
Microarchitecture

Logic

Circuits
Electrons
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Computer Architecture Today (3)

* You can revolutionize the way computers are built, if you
understand both the hardware and the software

* You can invent new paradigms for computation,
communication, and storage

e Recommended book: Kuhn, “The Structure of Scientific
Revolutions” (1962)
— Pre-paradigm science: no clear consensus in the field

— Normal science: dominant theory used to explain things
(business as usual); exceptions considered anomalies

— Revolutionary science: underlying assumptions re-examined
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... but, first ...

* Let’s understand the fundamentals...

* You can change the world only if you understand
it well enough...

— Especially the past and present dominant paradigms
— And, their advantages and shortcomings -- tradeoffs
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Paper to review next (Sept. 29t")

* Exploiting ILP, TLP, and DLP with the
polymorphous TRIPS architecture

by Karthikeyan Sankaralinga et al.,
ISCA 2003.
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http://www.cs.toronto.edu/~pekhimenko/courses/csc2224-f19/docs/TRIPS.pdf
http://www.cs.toronto.edu/~pekhimenko/courses/csc2224-f19/docs/TRIPS.pdf
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Asymmetric Multi-Core



Asymmetric Chip Multiprocessor (ACMP)

Small | Small | Small | Small Small | Small
core core core core core core
Large Large Large
core core Small | Small | Small | Small core Small | Small
core core core core core core
Small | Small | Small | Small Small | Small | Small | Small
core core core core core core core core
Large Large
core core Small | Small | Small | Small Small | Small | Small | Small
core core core core core core core core
“Tile-Large” “Tile-Small” ACMP

* Provide one large core and many small cores
+ Accelerate serial part using the large core (2 units)

+ Execute parallel part on small cores and large core for high
throughput (1242 units)
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